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1. Introduction

1.1 BPS couplings in four dimensions

Compactifications to four dimensions with N=2 supersymmetry are quite fascinating be-

cause of the extent to which quantum corrections to space-time couplings can be un-

derstood. In addition to the gravity multiplet, the space-time N=2 supergravity theory

typically contains vector multiplets and hypermultiplets. Each vector multiplet contains a

complex scalar, while each hypermultiplet contains four real scalars organized as a quater-

nion. The moduli space for an N=2 compactification splits locally into a metric product

space

MV ×MH . (1.1)

These two types of supermultiplet arise in quite different ways depending on the string

compactification under consideration.

The main focus of study has been a class of BPS vector multiplet couplings given in

terms of F (g)(z, z̄) where (z, z̄) are vector multiplet moduli; see for example [1]. These

couplings appear in the low-energy effective action in the schematic form
∫

d4xF (g)(z, z̄)R2T 2g−2 + · · · (1.2)

where T is the graviphoton field strength. The prepotential, F (0), determines the metric

on the vector multiplet moduli space. In a class of examples, these couplings can be

determined exactly using string dualities. The quantum corrections encoded in the F (g)

can contain interesting information about instantons like Gromov-Witten invariants of a

Calabi-Yau space.

In this work, we will focus on quantum corrections to the hypermultiplet couplings.

These couplings are far less well understood. What is known is that the hypermultiplet

moduli space MH is a quaternionic Kähler manifold [2], whose classical form can often be

determined. Such a space with quaternion dimension n has holonomy Sp(1) ·Sp(n). In the

limit where gravity is decoupled GN → 0, this quaternionic Kähler manifold is replaced

by a hyperKähler manifold with holonomy Sp(n). This local limit is significantly easier to

analyze.

There are several ways of constructing an N=2 compactification in string theory. A

prime example is type II string theory compactified on a Calabi-Yau space X. Another

example is the heterotic or type I string compactified on K3 × T 2. This compactification

requires a choice of gauge bundle. There is also a class of N=2 heterotic compactifications

with NS flux [3], and an assortment of symmetric and asymmetric orbifold compactifica-

tions. The cases of interest to us in this paper are the heterotic or type I string on K3×T 2

and the type IIA string on a Calabi-Yau space X. These two compactifications can be dual

if X admits a K3 fibration.

In many regards, the natural setting in string theory for a study of hypermultiplet

couplings is the heterotic string. As illustrated in table 1, the hypermultiplet couplings

computed in the heterotic string are not renormalized by either string loop or string non-

perturbative effects. This follows because the heterotic dilaton is part of a vector multiplet.
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Vector Hyper

IIA on X vol(X) gs

Heterotic on K3 × T 2 gs vol(K3)

Table 1: The type of supermultiplet containing the string coupling and the volume which controls

α′ corrections in type IIA and heterotic string theory.

The hypermultiplet couplings are therefore determined by (0, 4) superconformal field

theory. When computed in terms of a non-linear sigma model, the hypermultiplet cou-

plings can receive both perturbative α′ corrections and corrections from heterotic world-

sheet instantons. At large volume, these world-sheet instanton effects are counted by a

generalization of Gromov-Witten theory which takes into account the bundle structure.

These instanton corrections are therefore naturally studied in complex geometry.

On the other hand, in type II string theory on X hypermultiplet couplings can receive

both perturbative and non-perturbative corrections in the string coupling. In type IIA

string theory, there are no α′ corrections but there are quantum corrections from Euclidean

D2-branes wrapping special Lagrangian submanifolds of X (sL 3-folds or sLags) [4]. There

are also quantum corrections from Euclidean NS5-branes wrapping X and bound states

of both branes. Little is actually understood about the structure of sLags, or how to

appropriately count them when they appear in families; see [5] for some recent discussion.

The main difficulty with studying sLags is that they involve real rather than complex

geometry.

In string theory, BPS hypermultiplet couplings provide a natural counting function

for these various instanton configurations. The idea of counting will, in general, involve

more than just the semi-classical BPS configurations. This is necessarily the case because

couplings in the space-time effective action vary smoothly with moduli, even when cross-

ing curves of marginal stability. BPS particles, however, can decay across such curves.

Therefore, space-time couplings receive contributions from Euclidean space BPS instanton

configurations together with some non-BPS contributions needed for smoothness. Usually

it is possible to unentangle the two types of contribution. This phenomenon is already well

studied in supersymmetric field theory.

So, for example, the hypermultiplet moduli space metric G which determines the space-

time kinetic terms for the hypermultiplets q,
∫

d4xGij(q)DµqiDµqj + · · · , (1.3)

counts sLag and NS5-brane instanton corrections when computed in type IIA on X at weak

coupling. When computed in the heterotic string on K3× T 2 at large volume, this metric

counts world-sheet instantons. However, actually computing these quantum corrections

has proven to be challenging in any compactification.

Now at weak coupling in type IIA or large volume for the heterotic string, there is a

distinguished hypermultiplet, qZ , known as the universal hypermultiplet. It contains either

the string dilaton or the volume modulus in type II or heterotic string theory, respectively.
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Using qZ , one can construct the hypermultiplet analogue F̃ (g)(q) of the higher derivative

vector couplings (1.2) [6]. These couplings will be described later in section 5.2. It is

important to stress that at generic points in MH , there is no distinguished hypermultiplet.

What has been studied so far is the one string loop correction to the metric on MH

for type II on X which is proportional to χ(X) [7, 8]. In addition, quantum corrections in

the type II string have been studied in [9 – 13]. A particularly well examined case is when

MH is low-dimensional. In this situation, the quaternionic Kähler condition becomes much

more powerful [14 – 16].

1.2 BPS couplings in three dimensions

Now there are good reasons to expect the structure of hypermultiplet couplings to be

as beautiful as that of vector multiplets. On a further circle compactification to three

dimensions, hypermultiplets and vector multiplets become equivalent. The way this works

goes as follows: a 4-dimensional abelian vector Aµ compactified on S1 gives rise to one

compact scalar from the Wilson line on S1,

∫

S1

Aµdxµ, (1.4)

and a second compact scalar arises from dualizing the three-dimensional photon. Similarly,

the circle reduction of the N=2 gravity multiplet (graviton and graviphoton) gives rise to

one extra hypermultiplet. Under this classical duality, the special Kähler moduli space

MV of complex dimension nV is replaced by a quaternionic Kähler moduli space M̃H of

quaternionic dimension nV +1. Decoupling the hypermultiplet from the gravity sector yields

a hyperKähler rather than quaternionic Kähler space. The moduli space M̃H obtained this

way admits a torus action for each resulting hypermultiplet.

On compactification to three dimensions, MH is unchanged. One can now imagine

exchanging M̃H with MH . This exchange is realized in the type II string by T-duality.

Type IIA on X × S1 is equivalent to type IIB on X × Ŝ1 where S1 and Ŝ1 are related by

T-duality. The resulting classical map between moduli spaces is known as the c-map [17].

The explicit mapping of classical supergravity actions has been worked out in [18]. Some

aspects of the geometry of this map together with an attempt to include string loop effects

appear in recent work [19]. It is important to stress that the T-duality we are describing

is, at best, a perturbative symmetry of the type II string on X × S1.

Unfortunately, as soon as we compactify to three dimensions, it is no longer possible to

easily determine the complete set of quantum corrections to the vector multiplet couplings.

There are new instanton effects in three dimensions which correspond to monopole gauge-

field configurations. The effects of these monopole instantons are difficult to determine

exactly even when gravity is decoupled. These instantons break the torus action on M̃H

to a discrete subgroup. For example, in type IIB on X × S1 a subset of these monopole

instantons are constructed from Euclidean D3-branes wrapping sLags in X and wrapping

the S1 factor.

In addition, there is a particularly problematic instanton which arises as follows: in

both type II on X×S1 and heterotic on K3×T 2×S1, there is a new gauge field arising from
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the metric reduced on S1. Monopoles for this gauge-field are constructed as gravitational

instantons in both string theories. The action for this instanton is non-perturbative in the

three-dimensional string coupling in both compactifications. If there were a method to

capture this instanton and exactly determine the vector multiplet moduli space in three

dimensions then one could hope to determine the exact quantum corrected metric on MH .

This might be possible using modular properties of the vector multiplet couplings [20, 21]

suitably extended to three dimensions together with the determinable subset of quantum

corrections that we will describe.

1.3 Plan and summary

We begin in section 2 by reviewing some facts about sLag geometry. We pay particular

attention to sLags in tori, K3 surfaces and in Borcea-Voisin 3-folds.

In section 3, we first describe a duality between two different compactifications of the

heterotic string on K3 × T 3. This duality follows from a study of M-theory on K3 × K̃3

with flux. The resulting map provides an analogue of the c-map for the heterotic string

which does not rely on a perturbative symmetry like T-duality. Along the way, we will

encounter quantum phenomena like emergence of a new dimension in the heterotic string

from wrapped NS5-branes.

Using this map, we propose two concrete ways of controlling quantum corrections to the

heterotic string hypermultiplet moduli space. The first is via a perturbative computation

of the heterotic vector multiplet couplings in three dimensions. This captures quantum

corrections to hypermultiplet couplings in the large volume limit of the K3 surface. In a

dual type IIA compactification, this computation maps to weak string coupling in which

we expect to distinguish loop effects from sLag instantons and NS5-branes.

The second approach is via the F (g) vector couplings computed in type IIA string

theory on a K3-fibered space X. The limit of interest is where the volume,

vol(P1) → 0, (1.5)

where P1 is the base of the K3 fibration. This is the opposite of the limit usually studied.

In this limit, we capture a different set of quantum corrections to the hypermultiplets in

the dual heterotic and type IIA compactifications.

For a class of models, there is a fairly explicit map at the orientifold locus from the

heterotic theory to type IIA. In section 4, we apply this map to instanton configurations

and find that world-sheet instantons in K3 can be mapped to brane instantons in X. Along

the way, we encounter a localization phenomenon where the contribution of many sLags

cancel out of the hypermultiplet couplings. Instead, the sum over sLag instantons can be

replaced by a sum over sLags with special structure. We also find that an obstruction to

wrapping cycles in a homology class with “no vector structure” in type I or Spin(32)/Z2

heterotic is realized geometrically in the type IIA dual by the absence of any corresponding

sLag.

In section 5, we derive some selection rules for computing the F̃ (g)(q) couplings in

heterotic and type I perturbative string theory. We find that F̃ (g)(q) is perturbatively
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g-loop exact in both the heterotic and type I string. In addition, the F̃ (g)(q) are generated

at a fixed order in α′ perturbation theory in the heterotic string.

We conclude in section 6 with a discussion of the topological complexity of a sLag L.

Based on the structure of fermion zero modes, we arrive at a conjecture that any sLag L

which is dual to a world-sheet instanton of genus g satisfies the relation

b1(L) ≥ g, (1.6)

where b1 is the first Betti number of L. We also show that for the case of the standard

embedding, the F̃ (g)(q) couplings are not renormalized by world-sheet instantons in the

heterotic string.

2. Special Lagrangian submanifolds

Let us begin by reviewing the definition of special Lagrangian submanifolds or sLags. We

will need particular cases in our analysis: namely sLags in 2-folds and 3-folds but we will

begin with the general case.

2.1 Basic definitions and properties

Let X be a Calabi-Yau n-fold with a Kähler form ω, a Ricci-flat metric g, and a holomorphic

(n, 0) form Ω. A submanifold L ⊂ X is said to be Lagrangian if ω|L = 0.1 Our interest is

mainly in special Lagrangians (sLags) L which satisfy the extra condition that Im
(
eiθΩ

)
=

0 for some constant angle θ.2 There are several features of sLag geometry that will be

important in what follows:

1. Since ω is a non-degenerate form on X, dimR L = n, and ω yields an isomorphism

from TL to N∗L.

2. L is calibrated by Re
(
eiθΩ

)
, and, hence, is absolutely volume minimizing with respect

to the metric g.

3. The local deformation theory of a sLag is extremely simple: it is a theorem of

McLean [23] that the deformations of a sLag L are in one-to-one correspondence

with the harmonic 1-forms on L. Locally the deformation moduli space of L is a

smooth manifold of dimension b1(L).

4. The Kähler form calibrates holomorphic submanifolds of X, so ω|L = 0 also implies

that TpL cannot contain a holomorphic plane.

These properties are discussed in greater length in a very lucid review by Joyce [24], but

hopefully this brief reminder will be sufficient. We will now give several examples of sLag

geometry that will be relevant for our work.

1This short-hand notation should be read as follows: splitting the tangent bundle TX|L as TL ⊕ NL,

we demand that for any p ∈ L and any v, w ∈ TLp ⊂ TXp we have ω(v, w) = 0.
2The careful reader will note that for a single sLag L the phase θ is entirely irrelevant because it can be

absorbed into Ω. However, it does play an important role for a discussion of A-brane stability [22].
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2.2 Special Lagrangian cycles in T 2

Since T 2 is a particularly simple space, one might expect that sLags in T 2 admit a particu-

larly simple description. This is indeed the case. We can describe a flat T 2 as a quotient of

C by the identifications: z ∼ z + 1 and z ∼ z + τ for some τ in the upper half-plane. Writ-

ing z = x + τy, with x, y normalized with period one, the natural Kähler and holomorphic

one-form are

ω = τ2 dy ∧ dx,

Ω = dz = dx + τdy.

Parameterizing a one-dimensional submanifold L by (x(t), y(t)), it is clear that the La-

grangian condition is vacuous, while the special condition with angle θ requires L to be a

straight line in the T 2 with

x = −(cot(θ)τ2 + τ1) y. (2.1)

Note that in order for this to be a well-defined cycle cot(θ)τ2 + τ1 must be rational, giving

a constraint on possible values of θ. It is easy to generalize this construction to higher

dimensional tori T 2n, but not all sLags will be obtained in this fashion. For example, one

can find sLags in T 6 that are not homeomorphic to a T 3 [25].

2.3 sLags in K3

Since we do not know any smooth Ricci-flat K3 metric, the sLags in a K3 surface S are

harder to describe than the sLags on tori. However, the hyper-Kähler structure of S does

allow us to relate sLags in a given complex structure to holomorphic curves in different

complex structure [24, 26]. This is quite important, as it translates a problem in real

geometry to a (hopefully) more tractable problem in complex geometry. Of course, finding

holomorphic curves is by no means an easy task!

To see this, recall that S admits three anti-commuting complex structures I, J,K with

IJ = K, compatible with the Ricci-flat metric. Fixing a given complex structure, say I,

we can write ω and Ω in terms of self-dual two-forms on S: ω = s1, Ω = s2 + is3, where

the si ∈ H2(S, R) satisfy

si ∧ sj = 2Volg(S) δij . (2.2)

The si transform in the adjoint representation under SU(2) rotations of the complex struc-

tures I, J,K. Suppose L is a sLag with phase θ in complex structure I. This implies

that

ω|L = 0

sin θ Re(Ω)|L + cos θ Im(Ω)|L = 0

cos θ Re(Ω)|L − sin θ Im(Ω)|L = Volg(L).

Now consider the following SU(2) rotation of complex structures:



I ′

J ′

K ′


 =




0 cos θ − sin θ

0 sin θ cos θ

1 0 0







I

J

K


 .
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Under this rotation we find ω′|L = Volg(L), while Ω′|L = 0. This is, of course, just the

condition for L to be holomorphic in complex structure I ′.

Having reduced the study of sLags in S to the problem of finding holomorphic curves

in S, let us comment on the structure of these “simpler” algebraic objects. As a start,

one might ask which cycles in H2(S, Z) are representable by holomorphic curves. We will

now argue that given C ∈ H2(S, Z) either C or −C has a holomorphic representative, and

hence, either C or −C has a sLag representative for some choice of the SU(2) rotation of

complex structures.

The proof is well-known, and we merely give it for completeness. Let C be a divisor

in H2(S, Z) with C · C = 2g − 2, and denote by LC the line bundle corresponding to C.

The Riemann-Roch formula for surfaces may be used to compute the holomorphic Euler

characteristic of LC :

χ(LC) = h0(LC) − h1(LC) + h2(LC) = 1 + g. (2.3)

Here hi(LC) are the dimensions of H i(X,O(LC )), and in particular, h0(LC) counts the

number of holomorphic sections of LC . Furthermore, Serre duality on S implies h2(LC) =

h0(L−C), and we obtain

h0(LC) − h1(LC) + h0(L−C) = 1 + g. (2.4)

Thus, either LC or L−C is a positive line-bundle. Suppose LC is positive. Then the

Kodaira vanishing theorem asserts that Hq(X,Ωn(LC)) = 0 for q + n > 2. But, recall that

Ω2(LC) ≃ LC on S, since S has trivial canonical class. It follows that h1(LC) = h2(LC) = 0.

Alternatively, if L−C is positive it follows that h1(L−C) = h2(L−C) = 0.

Thus, corresponding to either C or −C there exists a line bundle with 1+g holomorphic

sections. The corresponding holomorphic curve may be taken to be the zero of one of

these sections. For g > 0 we have rather an embarrassment of riches: there is, modulo

obstructions, a whole family of curves. In fact, for g > 1 it is even possible for the

holomorphic curve to have a number of disconnected components!3

2.4 sLags in 3-folds

Special Lagrangian submanifolds of Calabi-Yau 3-folds have a much richer structure. From

the discussion of sLags above, it is clear that we can construct many sLags in three-folds

with degenerate holonomy. For example, we can easily write down many sLags in T 6 that

are homeomorphic to T 3, and similarly, we can identify many sLags of the form C × S1 in

S ×E, where S is a K3 surface and E is an elliptic curve. In this case, C is a holomorphic

cuve in S and S1 is a cycle in E.

T 6 and S × E are examples of trivial elliptically-fibered Calabi-Yau 3-folds. More

non-trivial (singular) examples of 3-folds can be obtained by orbifolding these product

spaces. Under favorable conditions, the trivially constructed sLags in the product spaces

will descend to sLags in the quotient space. As we will show, heterotic/IIA duality implies

3We thank Paul Aspinwall for clarifying this point.
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that these “trivial” sLags play a distinguished role in instanton corrections. However, it

is important to realize that these are very special, and most of the sLags in the product

space are not of this form. We will now illustrate this in a concrete example of T 3 sLags

in T 6.

2.4.1 Some sLags in T 6

For simplicity, we work with a T 6 that is the product of three square tori with coordinates

zi = xi + iyi and Kähler and holomorphic forms

ω =
i

2

3∑

i=1

dzi ∧ dz̄i, Ω = dz1 ∧ dz2 ∧ dz3.

We consider a set of 3-cycles L constructed as graphs T 3 → T 3,

y1 = αx1 + βx2 + γx3,

y2 = βx1 + δx2 + ǫx3,

y3 = γx1 + ǫx2 + ρx3, (2.5)

where α, . . . , ρ are integer parameters. The tangent space to L is spanned by

V1 = (1 + iα)
∂

∂z1
+ iβ

∂

∂z2
+ iγ

∂

∂z3
+ c.c.,

V2 = iβ
∂

∂z1
+ (1 + iδ)

∂

∂z2
+ iǫ

∂

∂z3
+ c.c.,

V3 = iγ
∂

∂z1
+ iǫ

∂

∂z2
+ (1 + iρ)

∂

∂z3
+ c.c.. (2.6)

Note that the VA are linearly independent for all values of the parameters.

L is automatically Lagrangian since ω(VA, VB) = 0. In order for L to be sLag (with

θ = 0), we also need Im Ω(V1, V2, V3) = 0. Of course,

Ω(V1, V2, V3) =

∣∣∣∣∣∣∣

(1 + iα) iβ iγ

iβ (1 + iδ) iǫ

iγ iǫ (1 + iρ)

∣∣∣∣∣∣∣
, (2.7)

or

Re Ω(V1, V2, V3) = 1 + β2 + γ2 + ǫ2 − αδ − αρ − δρ, (2.8)

Im Ω(V1, V2, V3) = α + δ + ρ + αǫ2 + δγ2 + ρβ2 − αδρ − 2βǫγ.

There are many integer solutions to Im Ω = 0. As a simple example, we may set ǫ = δ = 0,

and then determine α in terms of β, γ, ρ: α = −ρ − ρβ2.

Consider the “elliptic fiber” E with tangent directions spanned by ∂
∂z1 and ∂

∂z̄1 . We will

now show that TE and TL need not have a non-trivial intersection. Such an intersection

would mean that there exist constants CA, not all zero, such that
∑

A CAV i
A = 0 for

i = 2, 3. More explicitly, we need

C1iβ + C2(1 + iδ) + C3iǫ = 0,

C1iγ + C2iǫ + C3(1 + iρ) = 0. (2.9)
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These equations imply that C2 = C3 = 0, so that unless β = γ = 0, TL cannot intersect

TE. Thus, the sLags with non-zero β or γ will not respect the decomposition T 6 ≃ T 4×E.

There are, of course, sLags that do wrap a cycle in E: setting β = γ = 0, we find

Im Ω(V1, V2, V3) = α + δ + ρ + αǫ2 − αδρ = 0. (2.10)

Any solution of this relation gives such a sLag.

2.4.2 Product sLags in Borcea-Voisin three-folds

Borcea-Voisin (BV) manifolds [27, 28] are elegant constructions of Calabi-Yau n-folds from

two lower dimensional Calabi-Yau manifolds. In general one starts with the pair of Calabi-

Yau manifolds (M1,M2) of dimension (m1,m2) (of course n = m1 +m2) with holomorphic

involutions (σ1, σ2). These involutions must reverse the sign of the respective holomorphic

top-forms (Ω1,Ω2) and were first considered in certain cases by Nikulin [29]. The Borcea-

Voisin manifold is

X = (M1 × M2) / (σ1, σ2) (2.11)

and is clearly Calabi-Yau since its holomorphic top-form

Ω = Ω1 ∧ Ω2 (2.12)

is invariant under the quotient. This construction yields a BV manifold at a singular point

in its Kähler moduli space, and a smooth three-fold may be obtained by blowing up the

singularities by moving into the interior of the Kähler cone.

It is possible to construct a sLag in X from a pair of sLags in M1,M2. Suppose that

(L1, L2) are sLags in (M1,M2) with phases (φ1, φ2) so that

Im
(
eiφ1Ω1

)
|L1

= 0 (2.13)

Im
(
eiφ2Ω2

)
|L2

= 0. (2.14)

Now since

Im (ei(φ1+φ2)Ω) = Im
(
eiφ1Ω1

)
∧ Re

(
eiφ2Ω2

)

+Re
(
eiφ1Ω1

)
∧ Im

(
eiφ2Ω2

)
(2.15)

clearly L = L1 × L2 ⊂ X is a sLag of phase φ = φ1 + φ2. If (L1, L2) are smooth and do

not intersect the fixed points of (σ1, σ2), then L will be smooth.

The case of interest to us is (M1 = K3,M2 = T 2). The σ1 quotient actions were

classified by Nikulin [29] and σ2 is the involution z → −z.

As explained in section 2.3, for every C ∈ H2(S, Z) either C or −C will have a sLag

representative for some SU(2) rotation of the complex structure. Clearly any two classes C

and C ′ that can be made holomorphic by the same SU(2) rotation will have sLag represen-

tatives with the same phase. A particular case of this observation was used to demonstrate

that the SYZ fibrations [30] of K3 and T 2 give rise to the SYZ fibration of X [31].
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3. A heterotic/heterotic duality

We would now like to describe a duality between heterotic string compactifications that will

lead to a computational framework for determining quantum corrections to hypermultiplet

couplings via calculations involving vector multiplets. We begin by recalling the basic

structure of the germane compactifications.

3.1 The basics of heterotic/type I on K3 × T 2

To describe a heterotic string compactification, we need to specify a target space metric

and a gauge bundle E. We will take our target space to be K3×T 2 or K3×T 2×S1 together

with an E8 × E8 or Spin(32)/Z2 gauge bundle. As in the prior section, we will denote our

K3 surface by S. In the large volume limit, the gauge bundle must have self-dual field

strength with instanton number 24. Therefore the gauge bundle E must be holomorphic

with a field strength that is a (1, 1) integral class on S for all choices of complex structure.

In the E8 × E8 case, the distribution of instantons between the two E8 factors is

specified by (n1, n2) where

n1 + n2 = 24 − n5. (3.1)

The number n5 specifies the number of NS5-branes at points on the K3 surface. If n5 = 0,

the compactification is perturbative. For the most part, we will restrict to this case. If the

compactification does not originate from a compactification in six dimensions then some

of the instantons might be embedded in gauge-fields arising from the torus factor, or there

might be NS flux. For the moment, we will restrict to compactifications that originate

from six dimensions.

The nH hypermultiplets of this compactification correspond to moduli of the world-

sheet conformal field theory. At large volume, these moduli describe unobstructed geo-

metric moduli of S together with moduli that describe deformations of the holomorphic

gauge bundle E. In general, many of the geometric moduli of S will be obstructed by the

holomorphicity condition on E.

The heterotic string non-linear sigma model is believed to flow to a (0, 4) superconfor-

mal field theory. The sigma model metric is known to receive perturbative α′ corrections

for all choices of bundle except E = TS [32]. In this exceptional case, the world-sheet

theory enjoys (4, 4) supersymmetry and the sigma model metric is uncorrected.

The universal hypermultiplet qZ arises from the volume modulus of S together with

three scalars obtained from the B-field reduced on the three self-dual forms of S. Together

these four scalars form a hypermuliplet which is distinguished at large volume and present

for any compactification of this kind. Note that the T 2 factor plays no role in the local

structure of the hypermultiplet moduli space. Rather there are nV + 3 vector multiplets

where nV is the number of vector multiplets present in six dimensions. For perturbative

compactifications, there is a constraint on the difference

nH − nV = 244 − 3. (3.2)

Since the four-dimensional string coupling is part of a vector multiplet, MH is exact at

tree-level and given by the Zamolodchikov metric of the (0, 4) conformal field theory. From
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the perspective of the non-linear sigma model, this metric receives both perturbative and

non-perturbative corrections in α′.

The non-perturbative corrections come from world-sheet instantons which correspond

to curves C ∈ H2(S, Z) which are holomorphic in some complex structure. Not all curves

contribute to a given space-time coupling. For genus 0 curves, the bundle E restricted to

C must trivialize to avoid extra left-moving fermion zero modes killing the contribution of

the curve [33].

For the Spin(32)/Z2 case, the topology of the gauge bundle is further characterized

by a generalized Stiefel-Whitney class w̃2 that describes compactifications with “no vector

structure” [34]. There are three distinct cases on S:

w̃2 · w̃2 = 0 mod 4, w̃2 · w̃2 = 2 mod 4, w̃2 = 0. (3.3)

For a curve to contribute to the renormalization of the metric on MH , the restriction of

w̃2 to C must also be trivial [35].

Ideally, we would like to sum up all such curves and α′ corrections and directly de-

termine the exact quantum corrected MH . This might be possible by extending recent

developments in summing (0, 2) heterotic instantons [36 – 39]. However, there is a basic

difficulty because world-sheet techniques are naturally adapted for holomorphic quantities

and MH is not naturally expressed in terms of a holomorphic prepotential except in local

limits where gravity decouples. Even these local cases are interesting [40, 41] but we will

not pursue them here.

Now the type I and Spin(32)/Z2 heterotic strings are S-dual to each other in ten

dimensions. On reduction to four dimensions, the four-dimensional string couplings and

volumes are related as follows

(gH
s )2 =

gI
s√
V I

, V H =
1

(gI
s )3

√
V I

. (3.4)

Here V refers to the six-dimensional compactification volume. The superscripts H, I spec-

ify heterotic or type I parameters respectively, and there are similar relations with H, I

reversed [42]. Note that this is a weak-weak duality in regimes of parameter space in four

dimensions.

Unlike the heterotic string, the type I string is described by a (4, 4) superconformal

field theory. Effects from the gauge bundle or open strings arise at higher loops in the string

coupling. For the type I string, the volume of S is part of a vector multiplet so there are

no α′ corrections to MH . However, there are both string loop corrections and D-instanton

corrections to MH . Under this duality map, world-sheet heterotic string instantons map

to Euclidean D1-branes of the type I string while perturbative α′ corrections map to string

loop corrections.

3.2 Heterotic/M-theory duality

We would now like to present an analogue of the c-map for the heterotic string. We will

then examine the implications of this map for the dual type IIA compactifications. There

are a number of interesting related observations in past work [43 – 47].

– 12 –



J
H
E
P
0
7
(
2
0
0
7
)
0
8
6

Our starting point is M-theory on K3 × K3′. Let us denote the first K3 surface by

S and the second by S′. There is an M2-brane tadpole in this background that must be

canceled [48, 43]. The cancelation can be accomplished by a combination of nM2
inserted

M2-branes and 4-form flux G4 satisfying the tadpole constraint [3]

1

2

∫
G4

2π
∧ G4

2π
+ nM2

= 24. (3.5)

A basic requirement is that
G4

2π
∈ H2,2(S × S′, Z) (3.6)

and that G4 be primitive. We can construct suitable fluxes as follows,

G4

2π
= ω ∧ ω′, (3.7)

where ω ∈ H2(S, Z) while ω′ ∈ H2(S′, Z). The amount of supersymmetry preserved by

this compactification depends on the choice of G4. If G4 is primitive with respect to each

of the P
1 × P

1 choices of complex structure of S × S′ then the full N=4 supersymmetry is

preserved; examples of this kind can be found in [3]. Otherwise only N=2 supersymmetry

is preserved.

We will restrict to cases where the full N=4 is preserved. In these cases, there are two

sets of hypermultiplets from S and S′ charged with respect to distinct SU(2)R symmetries.

The moduli space is locally a product of quaternionic Kähler manifolds MS ×MS′ .

3.2.1 The basic duality in seven dimensions

We now make use of the 7-dimensional duality [49] between

Het on T 2 × S1
R ∼ M-theory on S′, (3.8)

where S′ is an elliptically fibered K3 surface with fiber E′ and section B′ and total volume

V ′. We will also use E′ and B′ to denote the volume of the fiber and section, respectively.

The choice of elliptic fibration corresponds directly to picking a circle in T 3 since both

choices distinguish a Γ1,1 factor4 out of the Γ3,19 lattice. This duality does not require a

choice of S1
R but making such a choice will be useful for us later.

Note that the heterotic gauge-fields appear in M-theory by reducing C3 on H2(S′, Z).

Any unbroken non-abelian gauge symmetry in the heterotic string cannot be seen in su-

pergravity but is correlated with an appropriate ADE singularity of S′.

We require a basic map of the parameters. The heterotic string is described by

(α′, λ7, R) where λ7 = eφ7 is the 7-dimensional string constant defined in terms of the

dilaton φ7,

φ7 = φ10 −
1

2
log

vol(T 2 × S1
R)

α′3/2
. (3.9)

4We will always use Γ1,1 to denote the unique even self-dual lattice of signature (1, 1). See section 4 for

a discussion of the K3 cohomology lattice.
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The M-theory compactification is characterized by (ℓp, E
′, V ′) where ℓp is the 11-dimensional

Planck constant. The map becomes particularly simple if we perturb S′ a little and assume

that Pic(S′) = 2. Comparing the masses of BPS particles in both compactifications then

leads to the relations

α′ = ℓ2
p,

λ7 =

(
V ′

ℓ4
p

)3/4

,

R = ℓpV
′1/2E′−1. (3.10)

These relations can also be inverted:

ℓp =
√

α′,

E′ = α′3/2λ
2/3
7 R−1,

V ′ = α′2λ
4/3
7 . (3.11)

We have chosen to measure all our volumes in units of ℓp. To keep the resulting formulae

uncluttered, we will subsequently set ℓp = 1.

3.2.2 The F-theory limit

As before, let us suppose that the Picard group of S′ is two-dimensional and generated by

two null vectors v, v∗. The Kähler form on S′ has the general form

J = αv + βv∗. (3.12)

Without loss of generality, we may suppose the fiber class is represented by v, while that

of the section by v∗ − v, so that

E′ = J · v = β,

B′ = J · (v∗ − v) = α − β, (3.13)

giving J = (E′ + B′)v + E′v∗. Finally, the volume of S′ is also calibrated by J :

V ′ =
1

2

∫

S′
J ∧ J =

1

2
J · J = E′(E′ + B′). (3.14)

Now we can take the limit R → ∞ while holding fixed λ8 = λ7

√
R and α′. In this

limit we are left with heterotic on T 2. The elliptic fiber of S′ scales like E′ ∼ R−4/3 while

B′ ∼ R2/3. In this limit M-theory goes over to type IIB string theory with a string scale

α′
IIB ∼ R2/3. With respect to this IIB scale, B′ has finite volume proportional to λ8. This

is the F-theory limit [50].
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3.2.3 Reduction to three dimensions

We can now further compactify both sides of this 7-dimensional equivalence on an addi-

tional K3 surface S to obtain a three-dimensional equivalence. Let us assume that S is

elliptically-fibered with section. We denote the fiber and section volumes by E and B,

respectively. This yields the dual description

Het. on SH × T 2 × S1
R ↔ M-theory on S × S′,

EH , VH , λ3, R ↔ E,V,E′, V ′. (3.15)

The relations between these parameters follow from the seven-dimensional parameter map

described above and the relation between the seven-dimensional space-time metrics:

G7
Het. = V ′G7

M. (3.16)

We find

EH = V ′E,

VH = V ′2V,

R = V ′1/2
E′−1,

λ3 = λ7V
−1/2
H = V ′−1/4

V −1/2. (3.17)

These relations can also be inverted:

E = EHV
−2/3
H λ

−4/3
3 ,

V = V
−1/3
H λ

−8/3
3 ,

E′ = V
1/3
H R−1λ

2/3
3 ,

V ′ = V
2/3
H λ

4/3
3 . (3.18)

The parameter map is clearly only part of the story. We have a choice of bundle/5-

branes in the heterotic string satisfying (3.1) and a choice of flux/branes in M-theory

satisfying (3.5). These two choices are correlated. First, we note that the heterotic five-

branes map directly to M2-branes. The choice of heterotic gauge-bundle is interpretated as

G4-flux. A heterotic gauge-field arises from a class ω′ ∈ H2(S′, Z) while its field strength

corresponds to a choice of class ω ∈ H2(S, Z). So we can view the heterotic gauge-field in

terms of M-theory as
C3

2π
= A ∧ ω′ (3.19)

with field-strength
G4

2π
= F2 ∧ ω′ = ω ∧ ω′. (3.20)

Lastly, we can write the parameter relations in terms of the 4-dimensional heterotic

coupling λ2
4 = Rλ2

3 for later convenience,

E = EHV
−2/3
H λ

−4/3
4 R2/3,

V = V
−1/3
H λ

−8/3
4 R4/3,

E′ = V
1/3
H R−4/3λ

2/3
4 ,

V ′ = V
2/3
H λ

4/3
4 R−8/3. (3.21)
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Taking R → ∞ is again the F-theory limit.

3.3 A heterotic equivalence and implications for type IIA

Now we want to use M-theory to connect two different heterotic theories. This duality will

provide the heterotic analogue of the c-map. So we note that:

Het. on SH × T 2 × S1
R ↔ M on S × S′ ↔ Het. on (T 2)′ × S1

R′ × S′
H

λ3, R,EH , VH , ↔ E,V,E′, V ′ ↔ λ′
3, R

′, E′
H , V ′

H .

The map works in the following way: we first trade the heterotic string on SH × T 3 for

M-theory on S × S′ where SH → S and T 3 → S′. The parameters (EH , VH) for the K3

surface SH go over to (E,V ) for S. The parameters (λ3, R) determine (E′, V ′) for S′. This

step uses the relations we just derived in section 3.2.3. In M-theory both S and S′ can be

treated symmetrically. So we can construct a dual heterotic string theory by then sending

S → (T 2)′ ×S1
R′ and S′ → S′

H . The parameters (E,V ) of S determine (λ′
3, R

′) in this dual

heterotic compactification while (E′, V ′) determine (E′
H , V ′

H).

Mapping the parameters along the lines of section 3.2.3 gives the relations,

E′
H = R−1λ−2

3 ,

V ′
H = λ−4

3 ,

R′ = E−1
H V

1/2
H ,

λ′
3 = V

−1/4
H . (3.22)

For convenience, we also give B′
H = V ′

H/E′
H − E′

H :

B′
H = (R − R−1)λ−2

3 . (3.23)

Under this heterotic/heterotic duality, there is a natural action on the gauge bundle

induced by exchanging the roles of ω and ω′ in (3.20). Further, note that the (dualized)

vectors describing T 2×S1
R map under the duality to hypermultiplets describing the physics

of S′
H . Therefore quantum corrections to the vector multiplets in one theory describe

quantum corrections to hypermultiplets in the dual theory. In particular, small λ3 maps to

large V ′
H so perturbative loop corrections map to quantum corrections around large volume

in the (0, 4) SCFT with target S′
H . This is what we desire.

This map therefore provides a means of determining quantum corrections to the dual

(0, 4) SCFT. Namely, compute the tree-level and 1-loop corrections to the vector moduli

space metric in three dimensions, and re-intepret these corrections in the dual heterotic

theory. These vector multiplet corrections have already been studied in four dimensions

where the 1-loop correction is known to have a rich structure [51, 53, 54]. We expect the

computation in three dimensions to be at least equally interesting. This computation will

be examined elsewhere.

What is missed in this approach are non-perturbative corrections to the vector moduli

space like the monopole instantons mentioned in the introduction as well as NS5-brane

corrections. We will describe a different limit that captures some of those corrections
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in the following section. Toward that aim, let us re-write the parameter map (3.22) in

terms of the four-dimensional string coupling of the first heterotic description. Recall that

λ2
4 = Rλ2

3, so that

E′
H = λ−2

4 ,

V ′
H = λ−4

4 R2,

B′
H = (R2 − 1)λ−2

4 . (3.24)

We see that the limit R → ∞ with λ4 fixed blows up the section of S′
H leaving the volume

of the elliptic fiber untouched. This is the limit in which perturbative computations in the

heterotic string have already been explored.

However, there is a new limit suggested by (3.24). Namely, taking R → ∞ while

scaling λ4 to hold fixed the volume of cycles like V ′
H (λ4 ∼

√
R) or B′

H (λ4 ∼ R). These

are highly quantum limits of the (0, 4) SCFT because the elliptic fiber is shrinking to zero.

Indeed a new dimension must emerge from these limits in the dual heterotic theory! The

way this comes about can be seen by tracking the fate of KK modes on S1
R with

Mn ∼ n

R
. (3.25)

These modes map to M2-branes wrapping E′ in M-theory. In turn, these M2-branes map to

NS5-branes of the primed heterotic string wrapping (T 2)′×S1
R′×E′

H . This is a new quantum

phenomena in the heterotic string: wrapped NS5-branes give rise to a new dimension.

While this limit of small fiber is unusual from the perspective of the perturbative sigma

model, it is very natural from this duality. This is very much like the F-theory limit of

K3 except studied in the heterotic string. The reason this limit is so interesting is that we

can use results from type II/heterotic duality to determine exact expressions for the vector

multiplet couplings from curve counting in the type II string.

Additional results from type IIA. For heterotic models with a type IIA dual descrip-

tion, we can attempt to learn more about our heterotic/heterotic duality from the type

IIA dual; see [55] for earlier work in this spirit. To proceed, we need to determine the

parameter map for the following equivalence:

IIA on X × S1
r ↔ Het on SH × T 2 × S1

R

g3,XP1 , r ↔ λ3, BH , EH , R. (3.26)

Note that X is K3-fibered with section P1 of area XP1 . Matching space-time effective

actions gives the relations,

R = g−1
3 r1/2X

−1/2
P1 ,

λ3 = g
1/2
3 r−1/4X

−1/4
P1 ,

BH = g−2
3 r−1,

EH = Y. (3.27)
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The complex structure modulus Y of X is not distinguished except if there is an orientifold

locus for X. If such a locus exists then at that locus Y corresponds to the complex structure

of the elliptic fiber. The inverse map is:

g3 = R−1/4λ
1/2
3 B

−1/4
H ,

r = R1/2λ−1
3 B

−1/2
H ,

XP1 = R−1λ−2
3 ,

Y = EH . (3.28)

It is useful to re-write this in terms of the four-dimensional couplings:

g4 = B
−1/2
H ,

r = λ−1
4 B

−1/2
H R,

XP1 = λ−2
4 ,

Y = EH . (3.29)

We can now see that the limit R → ∞ with λ4 ∼
√

R described at the end of section 3.3

sends r → ∞. It also sends the size of the base P1 → 0 which is the opposite limit of the

one usually studied in this duality. This limit, however, might be accessible in examples

where the F (g) couplings have been directly computed in type IIA [21].

We are also free to scale BH as we wish since this is a hypermultiplet on the heterotic

side so we can consider other scalings of λ with R and still ensure that r → ∞. Now in

principle, this limit captures all quantum corrections to the hypermultiplet moduli space

in the primed heterotic theory in the limit described at the end of section 3.3. All such

quantum corrections are encoded in the F (g) couplings expanded around small type IIA

section P1 → 0.

Implications for type IIA. The final step is to ask what we learn about hypermultiplets

in the type IIA theory dual to heterotic on (T 2)′×S1
R′ ×S′

H . Let us denote the dual theory

type IIA on X ′ × S1
r′ . We expect X ′ to correspond to the mirror of X [45, 46].

We have proposed two methods for determining quantum effects in the heterotic string

on S′
H . The 1-loop heterotic computation in three dimensions makes sense when the volume

V ′
H is large. From (3.23), we see that B′

H can also be kept large. This is good news since this

means we can see quantum corrections in IIA in the limit where g′4 is small by using (3.29).

We should therefore be able to distinguish between NS5-branes, sLags and perturbative

corrections from the heterotic loop computation.

The second proposal involves the use of the exact F (g) couplings in the IIA theory on

X. Once again the volume V ′
H can be kept large and fixed but in this limit B′

H ∼ R and

so g′4 → 0. We would like to hold g′4 finite (and small) with r′ → ∞ so we should consider

the scaling

V ′
H ∼ 1/R2. (3.30)

This is a highly quantum limit in the heterotic string with the volume of the elliptic fiber

E′
H becoming very small. The dual of the elliptic fiber E′

H is a complex structure modulus
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Spin(32)/Z2 Het on K3×T 2 1. S−duality−−−−−−−−→ Type I on K3×T 2

2. mirror

y

F-theory on Mn × T 2 ≡ IIA on Mn
3. def ′n←−−−−− IIB on

fK3 × T 2

Ω(−1)FLσ

Figure 1: The type IIA ↔ heterotic duality sequence

Y ′ of X ′ so we are at least tuning the value of Y ′. It is possible that this is a singular limit

in complex structure moduli space in which the counting of brane instantons simplifies.

This needs to be explored further in specific examples.

4. Curves and sLags in string theory

In the preceding section, we described two specific proposals for computing classes of

quantum corrections in heterotic and related dual type IIA compactifications. We will now

restrict to type I/heterotic compactifications which admit an orientifold description [56].

This will provide a more explicit construction which, at least in some examples, permits

us to map all D-instantons in type I to brane instantons in M-theory or type IIA.

The duality chain we will exploit is illustrated in figure 1. In our subsequent discussion,

we will investigate steps 2 and 3 in this duality sequence. We should emphasize that this

particular duality chain is only valid for the Spin(32)/Z2 string. This is good enough since

we want to explicitly track the fate of certain curves in K3.

4.1 Type I ↔ F-theory duality

We start in six dimensions with the type I string on a K3 surface S. Equivalently, we can

view this compactification as type IIB string theory on S quotiented by world-sheet parity

Ω.5 The gauge bundle is characterized by one of the three choices of w̃2 given in (3.3). Each

of these three cases is dual to F-theory compactified on an elliptically-fibered Calabi-Yau

3-fold (with section) Mn. The base of the elliptic fibration B is a particular Hirzebruch

surface Fn.

More generally, any elliptically-fibered 3-fold M with section can be used to construct

an F-theory compactification. Such a space can be presented in Weierstrass form. Let W

be a P
2 bundle over B with homogeneous coordinates (x, y, z) which we take to be sections

of O(1)⊗K−2, O(1)⊗K−3 and O(1), respectively. The line-bundle O(1) is the degree one

bundle over the P
2 fibre and K is the canonical bundle of B. Then M is given by

zy2 = x3 + fxz2 + gz3, (4.1)

where f and g are sections of K−4 and K−6 respectively. There is a useful symmetry of

M easily described in the presentation (4.1); namely, inversion of the elliptic fiber which

5It is unfortunate that Ω is conventionally used to denote both world-sheet parity and holomorphic top

forms. We hope the context will make the usage unambiguous.
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corresponds to the Z2 action

I : y → −y. (4.2)

In turn, F-theory on M×T 2 is equivalent to type IIA string theory on M. The additional

torus factor does not affect the hypermultiplet moduli space because the moduli of the

torus appear in vector multiplets.

This leads to our first conclusion. As described in section 2, generic sLags in a 3-fold

do not have any particularly nice structure. However, sLags in type IIA or M-theory on

M which lift to Lorentz invariant six-dimensional instantons have a very special structure.

If we denote the Poincaré dual to a particular sLag submanifold by α then this form must

be odd under the involution (4.2),

I∗(α) = −α. (4.3)

As we explicitly demonstrated in the case of T 6, most sLags are not of this form. Since the

hypermultiplet moduli space is unchanged as we decompactify the T 2 factor or equivalently

take the F-theory limit, the contribution to the hypermultiplet couplings of sLags not of

this form must cancel. This is true for any elliptically-fibered space M. Said differently:

the instanton sum in six dimensions must reproduce the result of the full sum over sLags

in four dimensions. However, each instanton in six dimensions will map to a sLag with this

special structure. This is a kind of localization phenomenon.

Now let us return to the three cases of type I bundle appearing in (3.3). These three

choices are correlated with a choice of NS B-field [57]. Recall that H2(K3, Z) is an even

self-dual lattice Γ3,19 with signature (3, 19). In studying conformal field theory on K3, it

is natural to add an extra copy of Γ1,1 and consider the lattice

Γ4,20 = Γ1,1 ⊕ 3Γ1,1 ⊕ 2(−ΓE8). (4.4)

This extra factor of Γ1,1 is naturally associated to the 0-cycle and 4-cycle of the K3.

Specifying a B-field is equivalent to choosing an element of H2(K3, R/Z). A half-integral

choice B = Λ/2 for some Λ ∈ H2(S′, Z) is compatible with the involution Ω. In the

resulting type I compactification, Λ = w̃2.

We choose a mirror transform that trivializes the B-field and takes S → S′. Under

this transform,

Ω
mirror→ Ω(−1)FLσ, (4.5)

where σ is a quotient of S by a Z2-symmetry. Such quotients were classified by Nikulin [29]

and are labeled by three integers (r, a, δ). It is important for us that r is the rank of the

sublattice S+ ⊂ H2(S′, Z) invariant under σ.

In [57] it was determined that S+ has rank 2 and therefore r = 2. Only for the case

w̃2 = 0 is S+ ≃ Γ1,1. The three classes of Spin(32)/Z2 bundle are mapped into the following

quotients:

(i) w̃2 = 0 ↔ (r, a, δ) = (2, 0, 0),

(ii) w̃2 · w̃2 = 0 mod 4 ↔ (r, a, δ) = (2, 2, 0),

(iii) w̃2 · w̃2 = 2 mod 4 ↔ (r, a, δ) = (2, 2, 1).
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For these cases, the fixed lattice S+ has the metric

(i)

(
0 1

1 0

)
, (ii)

(
0 2

2 0

)
, (iii)

(
0 2

2 2

)
. (4.6)

This result does not require the division of the moduli space of S or S′ into Kähler and

complex structure moduli; however, it is useful to note that S+ = Pic(S′) for generic

choices of complex structure compatible with σ. Associated to these Nikulin quotients

are 3-folds Mn with B given by F4, F0 and F1, respectively. At a special locus in moduli

space, these Mn 3-folds can be realized as Borcea-Voisin 3-folds [58] described generally

in section 2.4.2.

4.2 The K3 mirror map

To understand the mapping of a curve in S into a sLag in Mn, we will need some details

regarding mirror symmetry for K3. We want to describe the mirror transform between

type I on S and the F-theory type IIB orientifold of S′. Background information can be

drawn from [59, 60, 31, 61].

First consider a K3 surface with cohomology lattice

H2(K3, Z) ≃ L

= M ⊕ T

= M ⊕ P ⊕ M̌ . (4.7)

The lattice T is the transcendental lattice and contains all classes in L orthogonal to the

Kähler form. We have distinguished a Γ1,1 factor P from T which corresponds to a choice

of sLag fibration with a torus fiber. The lattice M = Pic(K3). This decomposition into

M and T depends on the choice of complex structure. The quantum lattice is formed by

adjoining another copy of Γ1,1 for the zero and four cycles:

H2
qu(K3, Z) ≃ Q ⊕ L. (4.8)

The mirror map is an identification of geometrically distinct K3 surfaces which give

rise to the same (4, 4) SCFT. Each curve holomorphic in some complex structure of S can

support a BPS D-instanton. What we would like to show is that each of these curves maps

to a brane configuration in the mirror S′ which lifts to a BPS instanton of type IIA on Mn.

The map is formulated at the level of covering spaces of the physical moduli space. The

covering space of the complex structure moduli space is the period domain DM . Choosing

a point in this covering space corresponds to choosing a two-form Ω ∈ H2(K3, C) satisfying

Ω · Ω = 0, Ω · Ω > 0. (4.9)

The choice of Ω is unique up to a phase. By definition Ω lies in a complexified subspace

spanned by T ∈ H2
qu(K3, Z). The covering space of the complexified Kähler moduli space

is called the tube domain,

TM = {B + iω ∈ M ⊗Z C| ω · ω > 0} (4.10)
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S S′

Transcendental P ⊕ M̌ Q ⊕ M

Quantum Picard Q ⊕ M P ⊕ M̌

Figure 2: The exchange of lattices for the case of (1, 1) B-field.

where B ∈ H2(K3, R/Z) is defined modulo integral shifts. With suitable definitions [61,

62], the mirror map corresponds to the exchange

Ω ↔ eB+iω. (4.11)

We will demand that our sLag fibration P satisfy Λ · P = 0 then mirror symmetry will

exchange Q and P in a simple fashion [57]. Choose primitive isotropic vectors E1, E2 ∈ Q

so that E1 · E2 = 1 and E1 · E1 = E2 · E2 = 0 then the maps

φ1 : TM (S) → DM (S′)

φ2 : DM (S) → TM (S′)

are given by

φ1(B + iω) = Ω′ =

(
B + E2 +

1

2
(ω · ω − B · B)E1

)
+ i (ω − (ω · B)E1) ,

φ2(Ω) = B′ + iω′ = pr(Ω) − (Ω · B)E1, (4.12)

where the projection pr : P ⊕ M̌ → M̌ . These formulae essentially encode the rela-

tion (4.11). As a final comment, note that for the case where B is purely a (1, 1) form, the

map exchanges the quantum Picard lattice with the transcendental lattice as illustrated in

figure 2 [59].

Now we start on S with B = Λ/2 and perform a mirror transform to S′ that exchanges

Q with P . We want the resulting space to have no B-field so we impose the conditions

Re (pr(Ω)) = 0, Re (Ω · Λ/2) = 0. (4.13)

We are free to tune the complex structure moduli of S so these conditions are satisfied.

• No B-field. We start with the simplest case where there is no B-field on S and we

have imposed the condition that B′ vanish on S′. In complex structure I, we denote

holomorphic two-form and Kähler form of S′ by

Ω′
I = Re Ω′

I + iIm Ω′
I = φ1(iω)

= E2 +
1

2
(ω · ω)E1 + iω, (4.14)

iω′
I = φ2(Ω) = pr(Ω). (4.15)

We see that Ω′
I ∈ T ′ = Q ⊕ M and is orthogonal to P ⊕ M̌ . So we note that

ω′
I ∈ M̌ , Re Ω′

I ∈ Q, Im Ω′
I ∈ M, (4.16)
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and thus in this complex structure, we see that E1, E2 ∈ Q are both sLags with zero

phase.

Now in this case with no B-field, the invariant lattice S+ is identified with Q [57].

So we make an SU(2) rotation to complex structure K chosen so that

ω′
K = Re Ω′

I , Re Ω′
K = Im Ω′

I , Im Ω′
K = ω′

I . (4.17)

With this choice, all elements in M and M̌ are orthogonal to ω′
K and therefore

admit Lagrangian representatives. As discussed in section 2.3, any cycle admitting

a Lagrangian representative in K3 admits a sLag representative for some choice of

phase.

This choice of complex structure is also compatible with a holomorphic action for the

Nikulin quotient on S, discussed in section 4.1, which acts by sending

Ω′
K → −Ω′

K. (4.18)

In this frame, E1, E2 ∈ S+ so, following the discussion in section 2.4.2, all elements of

the transcendental lattice of S′
K will lift to sLags in the corresponding Borcea-Voisin

three-fold. As we will discuss further in section 4.3, this is in agreement with our

basic expectations about the mapping of BPS D-instantons.

• With B-field. Now we wish to turn on a discrete B-field on S and see how this

alters the previous conclusions. Again we assume that there is no B-field on S′. So

consider B = Λ/2 on S where we assume that Λ · P = 0. In complex structure I, we

see that

Ω′
I = Λ/2 + E2 +

1

2
(ω · ω − Λ2/4)E1 + i (ω − (ω · Λ)E1/2) ,

iω′
I = pr(Ω) − (Ω · Λ/2)E1. (4.19)

As before, we rotate to complex structure K given in (4.17). In this complex struc-

ture, we see that Pic(S′
K) is generated by

{E1, 2E2 + Λ} (4.20)

since these two lattice vectors are orthogonal to Im Ω′
I and ω′

I . The metric on the

Picard lattice Pic(S′
K) is readily computed from (4.20),

(
0 2

2 Λ2

)
. (4.21)

Comparing these metrics with (4.6), we identify Pic(S′
K) with the fixed lattice S+.

So with this choice, the Nikulin quotient acts holomorphically with the action given

in (4.18). The generators given in (4.20) are the mirrors of the generators for S+

given in [57].
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So again following the discussion in section 2.4.2, we can conclude that all elements of

the transcendental lattice of S′
K lift to sLags of the associated Borcea-Voisin three-

fold. It is important to note that curves in the homology class [Λ] are not in the

transcendental lattice. This is a reflection in the mirror of the observation [35] that

KO(S) and KOfw2
(S) are different precisely in the direction Λ. This appears to be

how the IIB orientifold mirror realizes the wrapping obstruction induced by the “no

vector structure” condition.

However the combination,

[Λ] − Λ2

2
[E1], (4.22)

is part of the transcendental lattice. A brane in this homology class in S is initially

a bound state of D1-brane and D(−1)-brane charge. However in type I string the-

ory, there are no BPS D(−1)-branes so this configuration is not BPS. It would be

interesting to understand more deeply how this BPS constraint is realized in type

IIA directly by studying the spectrum of BPS brane configurations on these different

Borcea-Voisin spaces. There should be a significant difference between the cases with

a 6= 0 and a = 0 appearing in (4.6).

4.3 Type IIA duals of distinguished submanifolds

We now describe how different distinguished type I D1-instantons wrapping curves in

H2(S, Z) are mapped into the type IIA theory on Mn. For our purposes, the sLag fibered

K3 surface S has three distinct homology classes: the first corresponding to the section of

the fibration; the second being the class of the generic fiber; and the third class consisting

of all the singular fibers. We will now discuss these cases in detail.

• The section S2. The choice of sLag fibration corresponds to the choice of P in (4.7).

Let (P1, P2) be a basis for P with

P1 · P1 = −2, P2 · P2 = 0, P1 · P2 = 1. (4.23)

We choose P1 to be the class of the section. Under the mirror transform, a D1-

brane in P maps to a combination of wrapped 0-branes and 4-branes. A D-brane

configuration with pure D4-brane charge lifts to a Euclidean NS5-brane in type IIA

on Mn. So any D1-brane wrapping a submanifold in a homology class with non-zero

projection along P1 will map to an instanton in type IIA with NS5-brane charge.

• The generic fiber. The charge associated to the elliptic fiber P2 is more sub-

tle. In the mirror, we need to understand the lift of D(−1) instanton charge to

M-theory/type IIA on Mn. This is not well understood. In simpler cases, we can

provide a picture for how D(−1) instanton effects are realized in M-theory. A par-

ticularly well studied case is M-theory on T 2 which is dual to type IIB on S1. In

this case, D(−1) instantons renormalize higher derivative gravitational couplings like

the R4 terms in the IIB string effective action. However in M-theory, these effects

are reproduced by summing over Kaluza-Klein modes of T 2 [63, 64]. So we expect
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the effects of these D(−1) instanton configurations in F-theory to be reproduced by

perturbative effects in type IIA on Mn.

• Singular fibers. All other curves in S come from singular fibers and generically

include curves of any genus. The self-intersection number of the curve is invariant

under the mirror symmetry. Let us consider a curve in a class that maps to the

transcendental lattice of S′. Each such curve lifts to a sLag in Mn. The sLag is

constructed from the curve in a manner described in section 2.4.2. In section 6, we

will use physical arguments to conjecture a relation between the topology of a given

curve and that of its image sLag: namely, that a curve with genus g maps to a sLag

L with b1(L) ≥ g.

There is a particularly interesting sLag in a Calabi-Yau 3-fold whose existence in

general was conjectured by SYZ [30] and constructed in the Borcea-Voisin cases

in [31]. This construction involves a sLag fibration of S′ in complex structure K

given in (4.17) where Pic(S′
K) = S+. These sLags in combination with a sLag from

T 2 becomes a T 3 and an S3 of the 3-fold [31]. It would be interesting to extend this

analysis to other sLags originating from curves in S; in particular, one could check

the relation b1(L) ≥ g. The sLag fibration of S′ used in [31] is mirror to a sLag

fibration of S distinct from the one we chose for mirror symmetry.

5. F-terms in N = 2 supergravity from string theory

Four-dimensional N = 2 supergravity admits higher derivative F-term couplings con-

structed purely from either vector multiplets or hypermultiplets. The former are some-

times called untwisted F-terms while the latter are denoted twisted F-terms. The vector

multiplet F-terms satisfy a known recursion relation [1, 65]. It seems likely that space-

time supersymmetry together with duality implies these relations along the lines sketched

in [66]. If true, we expect similar relations to hold for the twisted hypermultiplet F-terms.

What we can observe is that the string coupling often sits purely in a vector multiplet

or a hypermultiplet. If this is true, we can expect these BPS space-time couplings to

enjoy special renormalization properties when computed on the string world-sheet. In

this section, we will examine the perturbative renormalization properties of these F-terms

when computed in type IIA, heterotic or type I string theory. Both for completeness and

contrast, we will begin by summarizing the structure of vector multiplet F-terms before

turning to the hypermultiplets.

5.1 Vector multiplet F-terms

One approach to constructing F-terms in four-dimensional N = 2 Poincaré supergravity is

by gauge-fixing chiral couplings in N = 2 conformal supergravity. For a nice review of this
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approach see [67]. The action of N = 2 conformal supergravity contains the chiral terms

LF =
∑

g≥0

L(g)
F , (5.1)

L(g)
F =

∫
d4x

∫
d2θd2θ̃W2gF (g)(XI(z)), I = 0, . . . , n. (5.2)

Here W is the Weyl multiplet and XI(z) are n + 1 vector multiplets which transform as

a section of an Sp(2n + 2) bundle over the moduli space MV . On gauge-fixing to obtain

Poincaré supergravity, the Planck mass is introduced via the gauge choice

XI = mple
K(z,z)/2XI(z), (5.3)

where K(z, z) is the Kähler potential, and it is convenient to use special coordinates

z0 = 1, zA = XA/X0, A = 1, . . . , n. (5.4)

In components, we obtain the F-term couplings

L(g)
F ∼ κ2g−2

∫
d4xR2T 2g−2e(1−g)K(z,z)F (g)(zA) + · · · (5.5)

where R is the anti-self-dual projection of the Riemann tensor, T is the anti-self-dual

graviphoton field strength and

F (g)(z1, . . . , zn) = F (g)(1,X1/X0, . . . ,Xn/X0). (5.6)

The omitted terms in (5.5) constitute the supersymmetric completion. The computation

of these low energy couplings from string theory is quite different in type IIA, heterotic

and type I string theory.

Vector F-terms in type IIA string theory. In type IIA on X, the string coupling is

part of a hypermultiplet while vector multiplets describe Kähler moduli of the compacti-

fication space X. Therefore, the only gs dependence in space-time vector couplings is via

the gravitational coupling: κ ∼ gs. This implies that (5.5) is computed exactly by a g-loop

world-sheet calculation. Indeed, the superstring calculation of this coupling reduces to the

genus g topological A-model partition function [6, 65].

That that this coupling only receives contributions at genus g can also be seen directly

from the world-sheet. At genus g, we insert 2g − 2 graviphoton vertex operators in the

(−1/2) picture and two gravitons in the (0) picture. To cancel the ghost charge from the

curvature of the Riemann surface as well as the graviphoton insertions, we must also insert

3(g − 1) picture changing operators.6 With these insertions, the vanishing of the total

6Recall that the β−γ U(1) ghost charge is saturated by inserting nP picture changing operators where

nP = 2g − 2 + nNS + nR/2

and nNS , nR are the number of insertions in the (−1) and (−1/2) picture, respectively.
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U(1)R charge is satisfied only by terms in the world-sheet correlator which include the

eφG− part of the picture changing operators.

If we were to consider computing (5.5) at genus g′ < g then the U(1)R charge condition

could not be saturated since the graviphoton insertions still have U(1)R charge 3(g − 1).

This charge cannot be canceled by the 2(g′ − 1) + (g − 1) picture changing operators and

therefore the correlator vanishes.

To understand the case with g′ > g, we decompose the picture changing operator P
into an internal component and a space-time component

P = Pst + Pint = e−φGst + e−φGint. (5.7)

To saturate the internal U(1)R charge condition requires that half of the additional 2(g′−g)

picture changing operators contribute either via their eφG+
int term or via their eφG+

st term.

In the former case, eφG+
int annihilates the chiral graviphoton vertex operators. In the

latter case, we must bring down more factors of space-time momentum which increases

the derivative order of the space-time coupling. So either way, this particular coupling

vanishes.

Vector F-terms in heterotic string theory. In heterotic on K3 × T 2, the string

coupling is part of a vector multiplet. In this case, the Peccei-Quinn symmetry is a powerful

constraint on the axion-dilaton dependence. For example, the Kähler potential has the

form [1]

eK(z,z) = g2
s + · · · , (5.8)

where omitted terms are non-perturbative in the string coupling. This implies that the

couplings (5.5) receive perturbative contributions from 1-loop only. We should point out

are that there are also tree-level contributions to F (0) and F (1) which arise because g = 0

and g = 1 surfaces admit conformal killing vectors. This same caveat applies throughout

our discussion.

This conclusion can also be reached by directly studying the heterotic world-sheet. This

is again because at higher genus, some of the additional needed picture changing operators

must contribute eφ̃G̃+ factors which annihilate the chiral insertions. So again, it is the

special structure of the space-time F-terms which leads to restrictions on contributions

from string loops.

Vector F-terms in type I string theory. In type I on K3, the string coupling resides in

a hypermultiplet. However on K3×T 2, the resulting four-dimensional string coupling does

not sit cleanly in either a vector multiplet or a hypermultiplet. It is easy to see that this

must be the case: on the one hand, hypermultiplets are renormalized by D1-instantons. On

the other hand, vectors are renormalized by D5-brane instantons. Therefore both flavors

of multiplet detect the value of the string coupling.

Computations of vector F-terms in type I on K3 × T 2 were studied in [68, 69]. Here

we just summarize one particular point which is useful for us later. The space-time SUSY
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operators are

Q
(L)
α,1 + Q

(R)
α,1 =

∮
dze−φ/2SαeiHT /2Σ +

∮
dze−φ̃/2S̃αeiH̃T /2Σ̃, (5.9)

Q
(L)
α,2 + Q

(R)
α,2 =

∮
dze−φ/2SαeiHT /2Σ +

∮
dze−φ̃/2S̃αeiH̃T /2Σ̃. (5.10)

The graviphoton vertex operator is obtained by spectral flow from the graviton vertex

operator:

Vgp =
(
Q

(L)
α,1 + Q

(R)
α,1

)(
Q

(L)
α,2 + Q

(R)
α,2

)
Vg. (5.11)

There are two different types of terms which arise from the two spectral flows acting

on the graviton. We could consider (QLQL + QRQR)Vg type terms or we could consider

(QLQR + QRQL)Vg. Roughly speaking, these two sets of terms look respectively like the

graviphoton from the heterotic string on K3× T 2 and the graviphoton from type II on X.

However as we will see, the F-terms are all generated at only one loop.

The picture changing operator is the world-sheet supercharge,

P = eφG = eφ(G+ + G−)

= eφ

(
∂X1ψ1 + ∂X2ψ2 + ∂XT ψT + e

i
HK3√

2 ĜK3

)
+

eφ

(
∂X1ψ1 + ∂X2ψ2 + ∂XT ψT + e

−i
HK3√

2 ĜK3

)
, (5.12)

where (X1,X2) denote the space-time coordinates while XT denotes the T 2 coordinate.

The operator ĜK3 is the neutral piece of the K3 supercurrent. To find which string loops

can generate these F-terms, we must balance the various U(1) charges on the world-sheet.

Schematically, we see that the graviphoton vertex operators have zero U(1)R charge

from the K3 CFT, (+1) U(1)R charge from the T 2 CFT and (−1) total charge from the

left-moving and right-moving ghost U(1) combined. One way to proceed is to observe that

the PCO has T 2 U(1)R charge (±1) and U(1) ghost charge (+1).

So to cancel the U(1) charge of the T 2 factor, we would need to insert (2g − 2) PCO’s

which could only contribute through their eφG−
T 2 factors. By doing this we see that this

condition of canceling the T 2 charge has resulted in zero net ghost charge; thus this am-

plitude is only non-zero at 1-loop.

5.2 Hypermultiplet F-terms

The hypermultiplet F-terms have proven more difficult to characterize in either conformal

or Poincaré supergravity; see [19, 70, 71, 15, 10] for recent progress. For our needs, a

component formulation is sufficient. Let us recall that in certain limits of the moduli

space MH , there is a distinguished universal hypermultiplet qZ . The proposed F-terms

are constructed as follows: decompose qZ into two complex scalars φS and φZ . Such a

decomposition only makes sense locally on the moduli space. In terms of (φS , φZ), we
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consider the couplings

LF̃ =
∑

g≥0

L(g)

F̃
, (5.13)

L(g)

F̃
= κ2g−2

∫
d4x

√
g(∂µ∂νφS)(∂µ∂νφS)(∂µφZ∂µφZ)g−1F̃ (g)(qi); g ≥ 1.

The qi are the remaining hypermultiplets and L(0)

F̃
contains the hypermultiplet kinetic

terms. These couplings treat φS and φZ asymmetrically. A more natural formulation of

these twisted F-terms should not involve such a distinction. A superspace completion of

these higher derivative terms has been proposed in [19].

In the theory with N = 4 supersymmetry, the
∫

d4x(∂∂S)2 coupling is related by su-

persymmetry to
∫

d4xR2. Both couplings have been computed by a one-loop computation

in type IIA — the former in [52] and the latter in [51].

Type IIA string theory. The type IIA world-sheet CFT computation of (5.13) is very

similar to the computation of (5.5). Despite the fact that the string coupling is part of a

hypermultiplet, the L(g)

F̃
are generated only at g-loops in perturbation theory. These cou-

plings are given by the topological B-model genus g partition function [6]. In addition, there

are all the interesting sLag and NS5-brane instanton effects which are non-perturbative in

the string coupling.

5.2.1 Heterotic string theory

This class of couplings has not been previously considered from the world-sheet perspec-

tive. The only gs dependence is through the gravitational coupling κ ∼ gs since the string

coupling sits in a vector multiplet. Consequently, we expect the amplitudes which deter-

mine this coupling to be g-loop only. We will demonstrate this directly from the string

world-sheet.

The universal hypermultiplet in the heterotic string comes from reducing the NS B-field

on the 3 anti-self-dual forms of K3 together with the overall volume. The corresponding

vertex operators for the hypermultiplet scalars φS and φZ in the (−1) picture are

V(−1)
S = Jīe

−φ:∂Xiψ̃̄eip·X :(z, z̃), (5.14)

V(−1)
Z = Ωije

−φ:∂Xiψ̃jeip·X :(z, z̃), (5.15)

where Jī is the Kähler form and Ωij is the holomorphic 2-form of K3. These vertex

operators are transformed into each other by two spectral flows.

The coupling ∫
d4x

√
g(∂∂φS)2F̃ (1)(qi) (5.16)

is generated at genus 1 only. At genus 1, there is no U(1) background charge so the U(1)

charges of the two insertions of S must cancel amongst themselves. The two point function

of S vanishes on shell so to compute (5.16), we must consider the four point function of

two gravitons and two S insertions which is of order O(p4).
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The key difference between the heterotic and type IIA calculations is that on the

heterotic side, φZ is an NS-NS field while it is an R-R field in type IIA. In terms of

calculating space-time effective actions from the world-sheet, recall that Ramond insertions

compute field strengths in space time while NS insertions compute potentials. To see that

(5.13) is a genus g amplitude, we again use U(1) charges.

Consider (5.13) computed at genus g′. The two insertions of VS are in the zero picture

and must be accompanied by two gravitons just as in the genus 1 case. This alone cancels

all U(1) charges and so we can consider the VZ insertions separately. Each insertion of

Pst provides a power of space-time momentum from its contraction with eipX . Since we

need 2g − 2 powers of momentum from the φZ insertions, we see that nst = 2g − 2. Each

insertion of Pint will provide (−1) units of internal U(1)R charge. Further, the cancellation

of the β−γ ghost number implies that

nint + nst ≡ nP = 2g′ − 2 + 2g − 2, (5.17)

and the U(1)R cancellation gives

nint = nNS = 2g − 2. (5.18)

From this we see that g = g′.

5.2.2 Type I string theory

The hypermultiplet F-term calculation in the type I string on K3×T 2 is quite interesting.

The basic difference in the world-sheet calculations of heterotic versus type I is that the

φS-field is related to the string coupling in type I. Indeed in type I on K3, this scalar is

the dilaton-axion and is therefore the identity in the chiral ring of the internal CFT. This

is quite different from the heterotic string where the corresponding vertex operator is non-

trivial in the internal CFT. This really should be the case because the heterotic string CFT

computation is exact while the D1-instantons are missed in type I perturbation theory.

It is interesting to note that by comparing the type I calculation with the type IIA

calculation, we can conclude that the type I world-sheet calculation is equivalent to a

reformulation of the topological B-model on the dual space X. It would be fascinating

if this observation could lead to some practical alternative to the traditional B-model

calculations.

The φZ -field vertex operator is

VZ =
(
Q

(L)
α̇,2 + Q

(R)
α̇,2

)(
Q

(L)
α,1 + Q

(R)
α,1

)
VS . (5.19)

The main difference between this vertex operator and the graviphoton vertex operator is

that this one has vanishing U(1) charge from the T 2 and (left plus right-moving) (+2) units

of U(1)R charge from the K3 CFT.

The picture changing operator is

P = eφ(G+ + G−) + eφ̃(G̃+ + G̃−). (5.20)
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If we insert 2g − 2 copies of VZ then since VZ has four terms, there could be many terms

which in principle could contribute. Each of these four terms has a different amount of left

and right-moving charge for both the ghost U(1) and U(1)K3. However the sum of left and

right-moving charges is equal for each term. Note that the U(1)T 2 charge of VZ vanishes.

Likewise for multiple insertions of P, there are many terms all of which have a common

left plus right sum of charges.

Now recall that G± has ±1 U(1) charge and ΣK3 has charge 1. So if we insert 2g − 2

copies of VZ then a possible term is

(
Q

(L)
α̇,2Q

(L)
α,1VS

)2g−2
(5.21)

which has left-moving U(1)K3 charge 4g − 4. It must be accompanied by

(
eφG−

)4g−4

which leaves 2g − 2 units of ghost charge.

This leads to our selection rule for computing the F̃ (g)(q) coupling. The amplitude

must be calculated on a surface with χ = 2− 2g. In general, this will involve contributions

from both oriented as well as unoriented world-sheets with and without boundaries.

It is important to note that our selection rule constraint applies to F̃ (g)(q) with g ≥ 1.

The cases g = 0 and to some extent g = 1 are distinguished because those Riemann

surfaces are not generic. We certainly expect at least a tree-level and 1-loop contribution

to the hypermultiplet metric determined by F̃ (0)(q). It is possible that there are no further

perturbative contributions beyond 1-loop (with an appropriate choice of fields) but this

has yet to be established.

We can also consider type I on K3 rather than K3 × T 2. In this case, the string

coupling sits cleanly in a hypermultiplet. Under S-duality, this hypermultiplet maps to the

vol(K3) of the dual heterotic string on K3 with the relation

(
gI
s

)2
=

1

V H
K3

(5.22)

where gI
s is the 6-dimensional type I coupling. This correlates the α′ expansion in the

heterotic string with the loop expansion in type I. Our selection rule then implies that the

F̃ (g)(q) with g ≥ 1 computed in the heterotic string are generated at genus g at a fixed

order in α′ perturbation theory together with world-sheet genus g instantons.

6. Comments on the topology of instantons

We will now discuss some aspects of the instanton corrections to the F̃ (g)(q) hypermultiplet

couplings of (5.13). As we have described in some detail, sLag instantons in type IIA string

theory on a 3-fold X which admits a K3 fibration should be characterized by a kind of genus.

More precisely, we would like to conjecture a lower bound on the topological complexity of

a sLag given in terms of the genus of the dual heterotic world-sheet instanton.
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Let us recall that a Euclidean D2-brane wrapping a sLag L in X will lead to couplings

in the four-dimensional effective action of the form

δSeff ∼
∫

d4x N(qi) exp

(
− 1

gs

∣∣∣∣
∫

L
Ω

∣∣∣∣ + i

∫

L
C3

)
[. . .] , (6.1)

where [. . .] denotes a particular space-time coupling of the low energy fields. Here C3 is

the pull-back of the Ramond-Ramond 3-form to L. The factor N(qi) denotes the one-loop

determinants from fluctuations about the semi-classical instanton configuration. If there

is a moduli space of sLags, N(qi) will also include a (supersymmetric) integral over this

moduli space. As described in section 2, the moduli space of geometric deformations has

real dimension b1(L). In type IIA, the moduli space is further enlarged by a choice of flat

bundle on L. The corresponding moduli space has complex dimension b1(L). A reasonable

measure of the topological complexity of a sLag is therefore provided by b1(L).

How is this measure related to the dual heterotic string instanton? The simplest

approach is to correlate the moduli spaces of both kinds of instanton. For example, con-

sider the duality chain described in figure 1. The starting point is a heterotic world-sheet

instanton wrapping a curve C embedded in a K3 surface S. To preserve 1/2 of the super-

symmetries, C must be holomorphic in some complex structure. Based on the argument

in section 2.3, this means that given any cycle C with self-intersection 2g − 2 there will

be a holomorphic world-sheet instanton of genus g with class either C or −C. For g > 0,

there is a moduli space of instantons. The virtual dimension of the moduli space for such

an instanton is 2g. These 2g bosonic zero modes correspond to holomorphic sections of the

normal bundle N of C in S.

Under the duality chain, we generally arrive at a bound state of NS5-branes and sLag

Euclidean D2-brane instantons. For simplicity, let us assume that the NS5-brane charge

is zero. Now there is no reason that the moduli space of the resulting sLag need agree

with the moduli space of the heterotic instanton. The duality chain involves a strong

coupling lift in the final step. Under S-duality, bundle and geometric moduli are typically

reorganized. However on tracing through the duality sequence, we are led to conjecture

that the resulting sLag moduli space must increase at least linearly with g. We will explain

the origin of this conjecture from the counting fermion zero modes around each instanton

configuration momentarily. So we expect a relation of the form

b1(L) ≥ ag + b (6.2)

for some constants a, b. Using the results of [31], we see that a g = 0 curve maps to an S3

sLag. This fixes b = 0. Determining a is more difficult but we will argue that a = 1 so a

lower bound on the topological complexity of the sLag resulting from a genus g instanton

is given by

b1(L) ≥ g. (6.3)

It might be possible to sharpen this bound. For example, the analysis of [31] also shows

that a particular elliptic curve in S with g = 1 maps to a T 3 sLag with b1 = 3.
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6.1 Heterotic world-sheet instantons

We begin in the heterotic string where we want to describe the fermion zero modes for a

genus g world-sheet instanton which contributes to (5.13). Such a BPS instanton auto-

matically has 6 bosonic zero modes corresponding to the position of the instanton in R
6.

Accompanying these bosonic zero modes are 4 right-moving fermion zero modes needed to

construct the chiral superspace measure

∫
d6xd2θd2θ̃. (6.4)

The superspace integral has already been implicitly performed in (5.13).

Because the configuration is BPS, the collective coordinate dynamics is supersymmet-

ric with 4 supercharges. This makes the counting of right-moving fermionic zero modes

possible since they necessarily pair with the bosonic moduli: there are 4g additional right-

moving fermion zero modes.

In addition, there are left-moving fermions that couple to the restriction of the holo-

morphic vector bundle E, discussed in section 3.1, to C. Since our vertex operators do not

carry any gauge indices, the path-integral over the left-moving sector contributes a factor

to the correlator proportional to the Pfaffian of the (left-moving) Dirac operator twisted

by E|C . In general, this factor is moduli-dependent and must be computed to obtain the

exact form of the correction to the coupling. Let us set aside this non-universal left-moving

factor for a moment to focus on the right-moving fermion zero modes. The structure of

these zero modes will constrain which world-sheet instantons correct the hypermultiplet

F-term couplings.

To determine whether a given instanton can generate an F̃ (g) coupling, we need to

examine the coupling of the string world-sheet to the background supergravity fields. This

will determine the coupling of the instanton to the scalars (φZ , φS) of the universal hy-

permultiplet. In physical gauge,7 the couplings of the string world-sheet fields are known

to second order in fermions [72, 73]. We note that the universal hypermultiplet contains

3 scalars obtained by reducing the NS B-field on the anti-self-dual forms of K3. In ten

dimensions, the relevant coupling of the world-sheet fermions to H = dB is given by

∫
d2σΘγµijHµijΘ. (6.5)

We have chosen an index structure such that µ is an index in R
6 and i, j are holomorphic

indices in K3. The Θ fields are world-sheet fermions valued in the target space spin-bundle.

This provides a coupling of the world-sheet fermions to derivatives of the scalars (φZ , φS)

of the universal hypermultiplet.

To generate a contribution to the coupling (5.13), the expansion of e−Sinst in the

background fields must contain a term of schematic form

(∂φZ)2g−2(∂∂φS)2.

7Physical gauge is a particular gauge-fixed form of the Green-Schwarz string.
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We see that bringing down powers of (6.5) generates powers of (∂φZ) coupled to two world-

volume fermions. The (∂∂φS)2 is not visible at quadratic order in the fermions. There is,

however, a direct analogy with the higher derivative vector couplings where a similar term

is expected to appear at fourth order in fermions [74]. This term should have the form

(Θ̄Θ)4(∂∂φS)2, and we will assume it exists.

So in total, we need at least 2(2g − 2) + 4 = 4g fermion zero modes in the instanton

background to generate this space-time coupling. This is precisely the number of right-

moving zero modes available in the background of a genus g instanton. This is in agreement

with the reasoning presented in section 5.2.1 which, in addition, implies no higher genus

instanton contributions.

Even if the right-moving zero modes of the instanton allow a contribution to some

F̃ (g), that contribution might still vanish. For example, this will happen whenever the

Pfaffian of the left-moving Dirac operator vanishes. In the genus 0 case this reduces to the

statement the V must restrict to a trivial bundle on C [75]. The corresponding condition

for the genus g > 0 case has yet to be cast in such simple terms because the bundle E

restricted to C generally does not split into a sum of line bundles.

A simple case where we can study the vanishing of this Pfaffian for g > 0 is the

standard embedding, E ≃ TS. As we will show, the Pfaffian will be zero for all instantons

in this case. With the standard embedding, E|C splits into a sum of line bundles, TC ⊕N ,

and by adjunction

E|C ≃ TC ⊕ T ∗C ≃ K ⊕ K, (6.6)

where K is the canonical bundle on C. The left-moving spinors are sections of

K1/2 ⊗ E|C ≃ K
1/2 ⊕

(
K1/2 ⊗ K

)
. (6.7)

From the Riemann-Roch theorem, the numbers of holomorphic sections of these bundles

satisfy

h0(K
1/2

) ≥ 2 − 2g,

h0(K1/2 ⊗ K) ≥ 2g − 2. (6.8)

Hence, there will always be additional zero modes from the left-moving fermions, and the

world-sheet instantons will not contribute to correlators without additional insertions of

the left-movers. In other words, there are no world-sheet instanton corrections to the F̃ (g)

in the case of the standard embedding. This extends the known non-renormalization of

the moduli space metric to these higher derivative couplings.

6.2 D2-brane instantons

We can now turn to the structure of fermion zero modes around a Euclidean D2-brane

instanton wrapped on a sLag L. This will provide evidence for the relation (6.3) by showing

that instantons satisfying the bound have a chance of contributing to the couplings (5.13).

For simplicity, we will restrict to singly wrapped branes. A BPS D2-brane instanton

automatically has 4 bosonic zero modes corresponding to the position of the instanton in
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R
4. Accompanying these bosonic zero modes are 4 fermion zero modes needed to construct

the chiral superspace measure.

A sLag with b1 > 0 will have additional fermion zero modes partnered with the bosonic

moduli. Once again, the collective coordinate dynamics is supersymmetric with 4 super-

charges. Therefore there are 4b1 additional real fermion zero modes. As in the case of the

heterotic string, these zero modes are needed to construct the couplings (5.13).

The world-volume action of a D2-brane coupled to 10-dimensional supergravity back-

ground fields has been worked out to quadratic order in the world-volume fermions; for

example, see [76, 77]. The action takes the form,

SD2 = SDBI +

∫

L
d3σ

√
hΘ̄(σ)ΓIJKLF4IJKL(Φ(σ))Θ(σ) + · · · , (6.9)

where Φ : L → M10 describes the embedding of L in the target space M10 while F4 = dC3.

The field Θ is a world-volume fermion while h is the induced metric on L. It is clear that

when this coupling is reduced on M10 ≃ R
4×X, we will generate world-volume interactions

that will include couplings to the scalars of the universal hypermultiplet

Θ̄γµΓijkΘ ∂µφZΩijk. (6.10)

Once again, each factor of ∂φZ appears with two fermions. In addition, we again expect

the D2-brane action to include terms of the schematic form (Θ̄Θ)4(∂∂φS)2.

For a D2-brane wrapping L to contribute to (5.13), the instanton must therefore have

at least 4g real fermion zero modes. Additional fermion zero modes do not necessarily kill

the contribution of a given instanton. These extra modes may be absorbed by bringing

down other interactions from the D2-brane action like the curvature of the instanton moduli

space metric.

Now we can connect this discussion with the heterotic fermion zero mode count. Via

the duality map, we expect each heterotic world-sheet instanton that wraps a singular fiber

of S to map to a sLag L in X as discussed in section 4.3. If such an instanton contributes

to an F̃ (g) coupling then we expect the corresponding D2-brane wrapping L to contribute

to this same space-time coupling. For this to be possible, the fermion zero mode analysis

requires that

b1(L) ≥ g. (6.11)

It should be possible to check this relation at the orientifold locus by generalizing the

analysis of [31]. Finally, we should mention that whether type IIA on X admits a type

I dual or a more general E8 × E8 heterotic dual, we still expect to find a dual sLag L

satisfying (6.11) for each world-sheet instanton.
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